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The effects of crossflow on the growth rate of inviscid Gortler vortices in a hypersonic 
boundary layer with pressure gradient are studied in this paper. Attention is focused 
on the inviscid mode trapped in the temperature adjustment layer; this mode has 
greater growth rate than any other mode at the minimum order of the Gortler number 
at which Gortler vortices may exist. The eigenvalue problem which governs the 
relationship between the growth rate, the crossflow amplitude and the wavenumber is 
solved numerically, and the results are then used to clarify the effects of crossflow on 
the growth rate of inviscid Gortler vortices. It is shown that crossflow effects stabilize 
Gortler vortices in different manners for incompressible and hypersonic flows. The 
neutral mode eigenvalue problem is found to have an exact solution, and as a by- 
product, we have also found the exact solution to a neutral mode eigenvalue problem 
which was formulated, but unsolved before, by Bassom & Hall (1991). 

1. Introduction 
This paper continues our studies on the Gortler instability mechanism in hypersonic 

boundary layers. For a discussion of the motivation for such studies and background 
information see Hall & Fu (1989) and Fu, Hall & Blackaby (1992). Both are concerned 
with linear stability properties of Gortler vortices, but the first studies a Chapman’s law 
fluid and the second is devoted to a Sutherland’s law fluid. A common feature between 
the results for these two types of fluid is that at the minimum order of the Gortler 
number at which Gortler vortices may exist, the most rapidly growing Gortler vortices 
are those trapped in the temperature adjustment layer sitting at the edge of the 
boundary layer over which the basic state temperature decays from its O(M2)  values 
near the wall to its free-stream value, where M is the free-stream Mach number. The 
major differences when these two different viscosity laws are used are as follows. First, 
using Chapman’s viscosity law predicts an O ( M 2 )  minimum Gortler number, whilst 
using Sutherland’s viscosity law predicts a smaller O(M3I2) minimum Gortler number. 
Secondly, the evolution of Gortler vortices in the temperature adjustment layer in 
Chapman fluids is less strongly affected by non-parallel effects than those in Sutherland 
fluids. This is due to the fact that when Chapman’s law is used, the temperature 
adjustment layer is logarithmically thin whilst when Sutherland’s law is used, the 
adjustment layer is much thicker. Certainly, for a hypersonic boundary layer across 
which the temperature varies significantly, it is more appropriate to use Sutherland’s 
law to model the viscosity of the fluids. Thus, in Fu & Hall (1992, 1993) which study 
nonlinear development and secondary instabilities, Sutherland’s viscosity law has been 
consistently used. In Fu & Hall (1992), we have shown how Gortler vortices may grow 
in the neighbourhood of the neutrally stable position to form a large-amplitude vortex 
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structure which consists of a core region bounded by two transition layers. Once such 
a structure has been established, various secondary instabilities in the form of 
travelling waves may be triggered off. There are at least two such secondary instabilities 
which have been observed experimentally. The first is called wavy type instability 
which makes the vortex boundaries wavy and which is located in the two viscous 
transition layers. This secondary instability has been studied in Fu & Hall (1992). The 
other type is an inviscid instability which can exist because of the inflexional nature of 
the steady state. In Fu & Hall (1993), we have shown how the change in the basic flow 
caused by the large mean flow correction of Gortler vortices would affect the growth 
rate of Rayleigh instability. 

All our studies mentioned above have been concerned with problems which arise 
when Gortler vortices occur in two-dimensional boundary layers, but in many practical 
situations, the basic boundary layer may be three-dimensional. Boundary-layer flows 
over a three-dimensional obstacle or over a turbine blade are such examples. A more 
significant example is the boundary-layer flow over the two areas of concave curvature 
on the lower side of a modern laminar flow airfoil which is fully three-dimensional 
when the wing is swept. Obviously, in order to effectively control or delay transition, 
the role played by a crossflow component in the basic flow should be fully understood. 

This paper may be considered as extending the Hall (1985) and Bassom & Hall 
(1991) studies on crossflow effects in incompressible flows to hypersonic flows. It is also 
related to the recent work by Dando (1992) on crossflow effects on Gortler instability 
in a compressible boundary layer. All of these studies have shown that crossflow has 
a stabilizing effect on Gortler vortices over certain wavenumber regimes, and more 
importantly, Gortler vortices may be completely stabilized by the three-dimensional 
nature of the basic state. One objective of the present paper is to give a quantitative 
description of the stabilizing effect of a crossflow on Gortler vortices in a hypersonic 
boundary layer. 

As has been observed before by Hall (1985) for incompressible flows, the case when 
the crossflow velocity component is a constant multiplier of the streamwise velocity 
component is degenerate in the sense that by a suitable transformation, the problem 
can be reduced to a Gortler problem corresponding to a two-dimensional basic state. 
This degeneracy happens when there is no pressure gradient in the inviscid flow. Thus 
in order to reveal the genuine implications of having a crossflow, we avoid this 
degeneracy by assuming in this paper that there exists a pressure gradient in the inviscid 
flow. However, as has been shown by Stewartson (1964), when there is a pressure 
gradient in the boundary layer, analytical solutions to the boundary-layer equations 
are possible only if we make three assumptions, one of which is that the viscosity 
should be given by Chapman’s law. In order to make the necessary analytical progress, 
we shall assume that this is the case. Thus the present paper is more relevant to Hall 
& Fu (1989). 

An important property of a hypersonic boundary layer is that the chordwise 
acceleration of a fixed fluid particle in the basic state is asymptotically large and in the 
opposite direction to the centrifugal acceleration owing to the curvature of the wall. 
This negative chordwise acceleration has been interpreted in our previous papers as 
effectively producing a negative curvature (or equivalently a negative Gortler number). 
Thus the curvature of the wall should be large enough to overcome this negative 
curvature due to the basic state if Gortler vortices are to exist at all. In this paper, we 
assume that the Gortler number is of the same order as the effective negative Gortler 
number due to the basic state curvature, this is the minimum order at which Gortler 
vortices may exist. At this order of the Gortler number, the fastest growing mode is 
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With 
Paper cross flow? 

Hall & Malik (1987) No 

Spa11 & Malik (1989) No 
Wadey (1 992) No 
Hall & Fu (1989) No 
FHB (1992) No 
Dando & Seddougui (1993) No 
Dando (1992) Yes 
This paper Yes 

Size of G 

G = O(u4) 
u &  1 
G = O(1) 
G = O(1) 
G = O(M2) 
G = 0 ( ~ 3 ’ 2 )  

G B M 2  
G B  1 
G = O(M2) 

Size of M 

M = O(1) 

M = O(1) 
M = O(1) 
M B  1 
M B  1 
M b  l & M = O ( l )  
M = O(1) 
M B  1 

TABLE 1. Relationships between previous studies and the present paper 

Viscosity law 

Chapman’s 

Sutherland’s 
Sutherland’s 
Chapman’s 
Sutherland’s 
Chapman’s 
Chapman’s 
Chapman’s 

trapped in the temperature adjustment layer and for this mode the large resultant 
Gortler number drives a large growth rate, and as a result, the eigenvalue problem 
determining the growth rate is essentially inviscid. The main aim of this paper is to 
determine how the existence of a crossflow would modify the growth rate of these 
inviscid Gortler vortices. We remark, however, that at higher orders of the Gortler 
number, the temperature adjustment layer mode (considered in this paper) may not 
necessarily be the fastest growing mode, see Dando & Seddougui (1993). In order to 
help the reader to see the relationships between the present work and previous studies, 
we have shown in table 1 the main features of those studies for compressible boundary 
layers which are most related to the present paper. In this table, FHB represents Fu et 
al. (1992), and a and G are respectively the wavenumber and the Gortler number. 

The rest of this paper is organized as follows. As a preparation to later analysis, we 
first discuss in the next section the solutions to the three-dimensional basic state when 
there is a pressure gradient. In $ 3  we formulate the general linear Gortler instability 
problem which is then specialized in $4 to the inviscid problem mentioned above. 
Sections 5 and 6 are devoted to the non-neutral and neutral solutions respectively, and 
in the final section we discuss our results and make some conclusions. 

2. The basic state 
Consider a hypersonic boundary layer over a rigid wall of variable curvature 

( ~ / A ) K ( ~ * / L ) ,  where L is a typical streamwise lengthscale and A is a lengthscale 
characterizing the radius of curvature of the wall. We choose a curvilinear coordinate 
system (x*, y*, z*) with x* measuring distance along the wall, y* perpendicular to the 
wall and z* in the spanwise direction. To fix ideas, we may assume that the rigid wall 
is the surface of an infinite cylinder; the z-axis is then aligned with a generator of the 
cylinder. The velocity components are denoted by (u*, ZI*, w*) and density, temperature 
and viscosity by p*, T* and p*, respectively. The free-stream values of these quantities 
will be signified by a subscript co. The Reynolds number R, the curvature parameter 
A and the Gortler number G are defined by 

We assume that the Reynolds number is large, while A is taken to be small. In the 
context of incompressible flows, the characteristic values of G for instability are O(1); 
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whilst in hypersonic flows G is O ( M 2 )  when Chapman's viscosity law is used (see Hall 
& Fu 1989), and is O(M312) when Sutherland's viscosity law is used (see Fu et al. 1992). 
In the following analysis, coordinates (x*, y*,  z*) are scaled on (L, R-1/2L, R-'12L), the 
velocity (u*, v*, w*) is scaled on (uz, R-'12uz, K 1 l 2 u : )  and other quantities such as p*, 
T*, and p* are scaled on their free-stream values with the only exception that the 
pressure p* is scaled on p z u z  and the bulk viscosity A* is scaled on ,uz. All 
dimensionless quantities will be denoted by the same letters without a superscript *. 
For an ideal gas without dissociation, the continuity, Navier-Stokes, energy equations 
and the equation of state are, to leading order, given by 

a 
2 + - ( p v p )  at axxa = 0, 

yM2p = pT. (2.7) 
Here terms of relative order R-l have been neglected and we have used a mixed 
notation in which (vl, v,, v,) is identified with (u, v, w) and (xl, x2, x,) with (x, y ,  z). 
Repeated suffices /3 signify summation from 1 to 3. The constants y, M and (r are in 
turn the ratio of specific heats, the free-stream Mach number and the Prandtl number 
defined by 

where .%?is the gas constant, k,, is the coefficient of heat conduction, and am = (y82T:)'I' 
is the speed of sound in the free stream. In equations (2.3)-(2.6), the operator D/Dt 
is the material time derivative and is given by 

a a a  
Dt ax a7 az = u-+v-+w--. 
D - 

The basic state is given by 

(2.8) 
(u, v,w> = @(x, Y ) ,  % v), w(x,  y)),  T = q x ,  y ) ,  

P = P k Y ) ,  p = P(X,Y), 

where we have allowed for a non-zero crossflow component w(x,y) .  Such a 
three-dimensional boundary layer may easily be obtained if, for example, the angle 
of yaw of the cylinder A is non-zero. We note that if we use U ,  to denote the magnitude 
of the free-stream velocity, then uz  = U ,  cos A and w z  = U ,  sin A .  The scale used for 
w* implies that A = O(R-l12) and so uz w U,. 
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By substituting (2.8) into the governing equations (2.2)-(2.7), we find that the basic 
state satisfies 

(2.10) 

(2.11) 

yM2P1 = pT, (2.13) 
where Pl is the inviscid solution for the pressure evaluated at y = 0. The equation 
obtained from the y-momentum equation (2.4) is simply ap//ay = 0 which implies that 
p=p(x)  = Pl. From the inviscid theory, we have the relation 

d P  dU1 -2 = -p l  ul-, 
dx dx 

(2.14) 

where p1 and U, have similar meanings to 4. If we introduce T,, the inviscid solution 
for the temperature evaluated at y = 0, then (2.13) can also be written as pT = p1 q. 

In this paper, we assume that dPl/dx =l 0, i.e. there exists a pressure gradient in the 
inviscid flow. If dPJdx = 0, then (2.10) and (2.1 1) together with the boundary 
conditions imply that W is a constant multiplier of U, in which case the original three- 
dimensional basic state can be made two-dimensional by rotating the coordinate 
system about the y-axis by an angle given by tan-’(m/u), see Rosenhead (1963) and 
Hall (1985). 

We now turn to the solution of the basic state equations. The reader is referred to 
the book by Stewartson (1964) for a detailed discussion of these equations. Here we 
shall just give an outline of the necessary procedures and the main results. 

The immediate consequence of including a pressure gradient is that similarity 
solutions are now only possible if we use Chapman’s viscosity law 

p = C(X) T, (2.15) 
assume that CT = 1 and make the homoenergic assumption. (We recall that analytical 
similarity solutions are possible without making any of the above assumptions if there 
is no pressure gradient.) In this paper, we shall adopt these assumptions to make the 
necessary analytical progress. Then it can be shown that a solution to the basic state 

(2.16) 
where W, = R112 tan A = 0(1), 7 = Y/b(X)  with ( X ,  Y )  related to (x,y) by 

X =  Y M ~ P , ( X ) ( T , ( X ) ) ~ / ~ C ( X ) ~ X ,  Y = (T,(x))’/~F, P =  s 
and A?) and g(7) satisfy 

f”’+ff”+p{l-f’”(n-l)(l-g)} = 0, (2.18) 
g” +fg’ = 0, (2.19) 

(2.20) 
(2.21) 

f(0) =f’m = g(0) = 0, 
f ’ (oo) = g(m) = 1. 
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In the above equations, n is the wall cooling coefficient, b ( X )  and p are defined by 
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(2.22) 

where U and m are constants appearing in the assumption Ul/(q)1/2 = UX" for the 
inviscid solution. 

Once the basic state velocity field has been determined, the temperature T can be 
calculated according to 

T =  Tf'2+[1 +;(Y-l)M2]{l-p+(n-l)(l-g)}. (2.23) 

Our previous experience with the zero-pressure gradient problem shows that the 
stability properties of a hypersonic boundary layer depend crucially on the properties 
of the basic state temperature distribution. When there is no pressure gradient, it is 
known from Freeman & Lam (1959) (see also Hall & Fu 1989) that the boundary layer 
splits into two sublayers in the large Mach number limit: a wall layer where T = O(M2)  
and a logarithmically thin temperature adjustment layer where T = O( l), and it is the 
latter sublayer which supports the most rapidly growing mode when the Gortler 
number is of the minimum order at which Gortler vortices may exist. In order to 
determine the precise boundary-layer structure for the present non-zero pressure 
gradient problem, we first need to know the large 7 behaviour off' and g. It can be 
shown from (2.18) and (2.19) that as v- fco,  

(2.24) 

exp ( - - ; ( ~ - w ) ~ )  + . . . , 
2(y - w)  ('I - w)1+28 

exp ( -:(T,I-U)') + . . . , g =  1-- c2 
'I - (0 

where w ,  c1 and c2 are constants. On substituting (2.24) into (2.23), we find that as 
7-f co and M-+ 00, 

1 
T = q + N M 2  exp (-;('I - w)') ('I - w)l+2,8+ .. . , (2.25) 

where N = cl(y- 1). 

In order to determine the location and thickness of the temperature adjustment layer 
at which T = O(l), it is convenient to let 

= q exp (p). 1 
N M 2  exp ( - ;('I - w ) ~ )  

('I - W)l+ZP 

Solving this equation for (q - w)  gives 

y"+(l+2p)logM, 
Ml 

' I - w  = MI- , (2.26) 

where M ,  = (2logM2)1'2. 

Equation (2.26) shows that the temperature adjustment layer is at 'I = O(M,) and is of 
O(l/M,) thickness. In the adjustment layer, T is given by 

T = q( 1 + eg), (2.27) 

so that T+ q as 93- co and matches with the wall-layer solution (2.25) as 3- + co. 
In $4, we shall need to know the asymptotic expressions for the basic state 

quantities and their various derivatives in the temperature adjustment layer in order to 
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determine the relative orders of the perturbation quantities. These expressions are 
listed in the Appendix at the end of this paper. 

3. The linear Gortler instability problem 
In order to determine the evolutionary behaviour of Gortler vortices in the 

hypersonic boundary layer described above, we now superimpose a vortex structure on 
the basic state. Thus the total flow is written as 

u = g+ Ueiaz, 0 = O+ Veiaz, w = w +  Weiaz, 1 
(3.1) 

Here U, V, etc. are functions of Xand Y only. On substituting (3.1) into the governing 
equations (2.9)-(2.13) and linearizing, we obtain the following perturbation equations : 

au av 1 a. 
ax ay p (  ax z) +-+++iiaW+= U-+V- =0 ,  (3.2) 

a 
aY 

p{L(U)+iawU+ UuX+ -a2pU+--(,iiu",8), (3.3) 

au p aw au . paw 
ax 3 a x a y  ay 3 ay 

+ ia$pv W+ p{L( V) + iaw V> + pY V + u2p V - 

( p x + p G ~ i i )  U+$pV-- - -  -- px--ia- - 

pau _ _  pav iapx U+ia---pw, U+iajiy V+ia---fpa2W 
3 ax 3 aY 

a8 
,owy V-iaP-ia&!i(iix+vY)O+,iiw - 

aY 
+- P- --- 

aY " (  :3 
0-&5(W)+iawW] = 0, 

(3.4) 

(3 5 )  

12 

(3.7) 

FLM 216 
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Here ji = ,Z(T), ,G = d,ii/dT, and the operator L( ) is defined by 

Y. Fu and P. Hall 

a a  
L ( )  = u-++-. 

ax ay 
In these equations, variables x and y have not yet been transformed into X and Y using 
(2.17). This will be done at a later stage. 

So far we have not specified the size of the wavenumber a relative to the Mach 
number. We know from the analysis in 52 that the hypersonic boundary layer splits 
into two sublayers in the large Mach number limits: a wall layer of O(Ml) thickness 
where T = O(M2)  and a temperature adjustment layer of O(l/Ml) thickness sitting at 
the edge of the boundary layer where T =  O(1). We note from (2.17) that 

Hence in terms of the physical variable y, the wall layer and the temperature 
adjustment layer are of thickness of O ( M 2 M l )  and O(l/Ml), respectively. Thus Gortler 
vortices trapped in the wall layer have large wavelength with a = O(1/(M2Ml)); 
whilst Gortler vortices trapped in the temperature adjustment layer have shorter 

( 3 4  
wavelength and have 

We shall shortly show in the following section that the minimum order of the Gortler 
number is M 2  if Gortler vortices were to exist. When the Gortler number is of this 
order, it can be shown that the growth rates for these two modes are respectively of 
order one and order (M2Ml)1 /2 .  Thus the mode trapped in the temperature adjustment 
layer is the fastest growing mode and will be studied in the rest of this paper. We 
remark, however, that the temperature adjustment layer mode is not always the fastest 
growing mode over the whole Gortler number regime. In fact, it has been pointed out 
recently by Dando & Seddougui (1993) that when the Gortler number becomes much 
larger than M l 2 M :  a wall-layer mode has larger growth rate than the temperature- 
adjustment-layer mode. This wall-layer mode is the counterpart of the fastest-growing 
mode found by Denier, Hall & Seddougui (199 1) for incompressible boundary layers. 

a = O(Ml). 

4. The inviscid mode trapped in the temperature adjustment layer 
As in the case when there is no pressure gradient (see Hall & Fu 1989), an important 

term in the perturbation equations is that involving L(+) in the y-momentum equation. 
It is easy to show with the aid of the basic state properties listed in the Appendix that 

where the expression for B(X)  is given in the Appendix. This term requires the Gortler 
number to be of order M 2  (the wall curvature should first of all overcome the effective 
negative curvature of the basic state if Gortler vortices were to exist at all). Hence we 
scale G by writing 

G = M2G, 
and we then have 
With the order of G fixed, we can now use the basic flow properties to deduce the 
relative orders of the perturbation quantities. It is found that in the general case when 
the coefficient of M 2  in the above equation does not vanish, 

L(u) = -B(X)  M 2  + . . . , (4.1) 

(4.2) 
(4.3) L(F3 + $cGd = (&(x) G- B(x)) M 2 .  
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and that U is of such an order that it does not enter the leading-order analysis. The 
large growth rate implied by (4 .44 is driven by the term L(u)++a~Gd in the y -  
momentum equation. This makes the viscous terms in the perturbation equations 
unimportant and so the resulting eigenvalue problem is essentially inviscid. Later we 
will show that if G" is chosen such that the coefficient of M 2  in (4.3) vanishes and if the 
crossflow is zero, the O(M2Ml)1/2 growth rate will become zero and a~(x)G" = B(x) 
then defines the leading-order neutral position (this is not true, however, when the 
crossflow is non-zero, as we shall show later). In the neighbourhood of this leading- 
order neutral position, Gortler vortices have a smaller growth rate. The evolution of 
such near-neutral modes is dominated by viscous effects (see Hall & Fu 1989). 

We now turn to the determination of the order of crossflow amplitude. It can be seen 
from (3.2)-(3.7) that this is achieved by investigating the terms involving the operator 

a a  
ax ay 

Q-+ U-+ iaw. 

With the use of the asymptotic expressions listed in the Appendix, this operator can be 
written in the temperature adjustment layer as 

ax (4.5) 

to leading order. It may appear that crossflow effects will be felt when a/aX - awl, but 
it will be shown shortly that the leading-order constant term in w does not affect the 
leading-order growth rate, see Hall (1985) for a similar result for the incompressible 
problem. Therefore, the sppropriate size of the crossflow is fixed by letting 

and in view of (3.8) and (4.4a), this gives 

With the order of the crossflow fixed, we now look for the following form of WKB 
solutions for (3.2)-(3.7): 

1 M2 1/2 

v =  (%) (V,(X,j)+ ...) E+ ... , 

B = (B0(X,j) + . . .) E+ . . . , 

P = -( P0(X,J)+ ...) E+ ..., M 2  
Ml 

where E, defined by 

(4.7) 
dX ( M 2 M l ) 1 / 2 /  X a A ( X ) d X - i a W , /  -), 

bU1 Bl Ul Bl 

takes care of the fast variation of the perturbation quantities in the streamwise 
direction. Here A ( X )  is in general complex, the real part of it characterizes the growth 

12-2 
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rate of the disturbance. In each of the expansions in (4.6), the first ellipsis represents 
the higher-order terms which tend to zero as M - t  co, whilst the second ellipsis 
represents the meanflow correction and higher harmonics. We note that the larger 
constant term iaW, in (4.5) has been absorbed by inserting the second term in the 
expression for E. Thus, as remarked below (4.5), the term i a y  in i i j  only contribute a 
sinusoidal coefficient to the disturbance without affecting the growth rate. 

On substituting (4.6) into the linear perturbation equations (3.2)-(3.7) and make use 
of the basic state properties listed in the Appendix, we obtain, by keeping only those 
leading order terms, 

5 T "+ikW, ay = 0, (4.8) 

--zeQI/,+(A-ikdeg)80 T = 0, 

(4.9) 

(4.10) 

(4.11) 

where 6 =  ~~ c2 T M:/2+2B W,, k = ~- b a  G = @ ( $ K - B ( X ) ) .  (4.12) 
b N M 3  Pl(T)1'2 Ml ' 

It can be seen that the parameters 6 and k characterize the sizes of the crossflow 
amplitude and the wavenumber, respectively, whilst the function 6 represents a 
balance between the positive wall curvature and the negative curvature due to the basic 
state. 

By eliminating Wo, 1 9 ~  and Po from (4.8)-(4.11) in favour of 6 and introducing a new 

(4.13) 
independent variable (; by 

(; = e@, 

we obtain 

where 

(4.14) 

(4.15) 

It is convenient to eliminate the first-order derivative term from (4.14) by introducing 
f through 

Equation (4.14) then reduces to 

1 5112  
V = -  

1 + p  

(4.16) 

where the 'hat' over V has been dropped to simplify notation. Under the 
transformation (; = eg, - co < j7 < co becomes 0 < (; < co and therefore (4.16) is to be 
solved subject to the asymptotic boundary conditions V+O as ( ;+O,co .  These 
conditions should be made more precise for numerical calculation and it can be 
deduced from (4.16) that the correct decay behaviour is 

V+(;liZfk 1--- 1+-+k2 --2 +O((;') as 5-0, { A[ i:" (: )] } 
(4.17) 
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The eigenvalue problem (4.16) and (4.17) determines the relationship between h (the 
real part of which is the growth rate), the scaled crossflow amplitude S and the scaled 
wavenumber k. In addition, 6, defined by (4.12), can also be taken as a parameter for 
fixed X. We note that for each set of fixed values of 6, k and 6, if (A ,  V )  is an eigenvalue 
set of (4.16) then so is ( -A*,  V*), where an asterisk denotes complex conjugate. 
Therefore to each ilnstable mode there corresponds a stable mode. Also, for each set 
of fixed values of k and 6, if (&,A,  V )  is an eigenvalue set of (4.16) then so is 
(-6, - A ,  V ) .  Hence we can restrict our attention to positive crossflow parameters and 
will do so for the remainder of this paper. 

Before we solve this eigenvalue problem for the non-zero crossflow cases, let us first 
note that when there is no crossflow, S = 0 and then (4.14) can be written as 

(4.18) 

This equation is of the same form as the equation (4.19) in Dando & Seddougui (1993), 
but we remark that the latter is only valid if G % M 2  since it was obtained by taking 
G+ 03 first and then M;.  03 and in doing so the contribution from the basic state 
curvature was neglected. 

vanishing at 5 = 0, co is a standard Sturm-Liouville 
problem which can be taken to be an eigenvalue problem for 6 / h 2  for each fixed k. Its 

Equation (4.18) subject to 

(4.19) 

where F(k) is a positive function of the scaled wavenumber k and can easily be 
determined by solving (4.18) numerically using the fourth-order Runge-Kutta method. 
This solution will be discussed further in the following section. 

A ~ > O  if 6 2 0 ,  h 2 < 0  if G G O .  
If we denote the location where 6 = 0 by X,, then h is real on one side of X ,  and is 
purely imaginary on the other wide. This implies that as X = X ,  is crossed, the 
behaviour of the disturbance changes from being oscillatory to being exponentially 
growing. Thus we may define X = X ,  as the neutral position and in view of the 
definitions (4.2) and (4.12b), the corresponding neutral Gortler number G then 

It follows from (4.19) that 

expands as 
G=- 2B(Xn) M 2  + higher-order terms, 

K ( X n )  
(4.20) 

where the higher-order terms can be obtained by following the procedure given in Hall 
& Fu (1989). However, our purpose in the present paper is not to determine the 
expression for the neutral Gortler number, but instead we wish to investigate how the 
existence of a crossflow would affect the growth rate of the inviscid mode described by 
the eigenvalue problem (4.16). To be more specific, one of our aims in this paper is to 
determine how the growth rate-wavenumber relation shown in (4.19) for zero 
crossflow is modified as the crossflow is gradually increased. 

5. Numerical results for non-neutral modes 
The eigenvalue problem (4.16) and (4.17) was solved by using the fourth-order 

Runge-Kutta method to determine the dependence of the growth rate (the real part of 
A)  on the wavenumber k with 6 fixed or on the crossflow amplitude 6 with k fixed. The 
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boundary 5 = 0 is chosen to be some small number and 5 = co is replaced by a large 
number which is continuously adjusted for varying k and S values (since as we will see 
later the eigenfunctions become more and more concentrated around the singular point 
as we approach neutral stability). At each end, Vis chosen arbitrarily and c?V/a< is then 
calculated from (4.17). We shoot from the two ends and match the solutions at an 
appropriate middle point where we impose the condition that ( l /V)aV/ac  has the 
same value from either side. 

For increasingly small wavenumbers, the eigenfunctions become more and more 
spread into the whole boundary layer (as we would expect since as k+O we are 
approaching the wall-layer mode) and in particular the eigenfunctions vary rapidly 
near the wall. In this case, it is found convenient to introduce a scaled variable 6 
through c = ec for the calculations in the interval to the left of the matching point. 

In order to be able to continue the calculations even when the mode becomes 
neutrally stable (i.e. when h becomes purely imaginary), we also introduce an 
indentation in our integration path. In order to see whether the indented path should 
be above or below the real axis, we first note from (4.15) that the complex singular 
point of the governing equation is at 5; given by 

1 
kS 

c; = -(hi - A, i), 

where A,+iht = A. For growing Gortler vortices A, > 0 and so this singular point lies 
below the real axis. Thus if the neutrally stable mode is taken to be approached from 
the unstable mode, then the integration path should be indented from above. In our 
calculations, the indentation is chosen to be a triangle and checks are duly made to 
make sure that it does not make any difference whether the indentation is on the left- 
or right-hand side of the matching point and how large the indentation is. 

We now present our numerical results for the non-neutral modes. All of the 
following results correspond to 6 = 2. Other choices of positive 6 values are found to 
yield qualitatively similar results. The cases & d 0 will be discussed in the final section. 
We note that although 6 d 0 is a possibility, cases corresponding to 6 > 0 are more 
important since when S = 0, positive values of 6 give rise to unstable Gortler vortices 
over the whole wavenumber regime, whilst if 6 < 0, no unstable Gortler vortices can 
exist. 

We shall first investigate the dependence of the growth rate on the wavenumber with 
S fixed. In figure 1 (a) ,  we have shown the growth rate curves for the first three modes 
when S = 0. We see that all the growth rate curves tend to zero as k +  0 and tend to 
a constant as k +  co. The former behaviour is required as the present mode should 
match with the wall-layer mode as k + 0 and the wall-layer mode has smaller growth 
rate. We now show that the latter behaviour is governed by a WKB solution of the 
governing equation (4.18). 

When S = 0, Gortler vortices are governed by (4.18). As k-t  GO, we look for WKB 
solutions of the form 

Equation (4.18) requires that 
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It then follows that in general there will be two first-order turning points where 
E(5) = 0. But the first mode which we are looking for must correspond to these two 
first-order turning points coalescing to form a single second-order turning point. This 
occurs when 

($-2)2-4 = 0, 

which yields the only acceptable result 

= $(6)1/2. 

The corresponding second-order turning point is then at 5 = 1 .  In order to determine 
the higher-order correction terms to the growth rate, we have to carry out the standard 
asymptotic analysis for second-order turning-point problems. Such an analysis shows 
that in the zero crossflow case h expands as 

= a ( ~ ) l ~ ~ - ~ ( d ) 1 / 2 ( ~ m + , ) , - l +  O(,-3'9, (5.2) 
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FIGURE 2.  Dependence of the growth rate for the first mode on the scaled wavenumber. 
(a) For small crossflows 6 = 0, 0.06, 0.1, 0.2, 0.7, 1, (b)  for larger crossflows 6 = 1(1)7. 

where rn = 0, 1,2, . . . . The first mode corresponds to rn = 0 and the asymptotic growth 
rate calculated from (5.2) is shown in figure 1 (a)  in dotted line. The asymptotic results 
for the second and third modes are not shown because good agreement with the 
numerical results is found only at larger wavenumbers. 

We note that the asymptotic analysis leading to (5.2) is very similar to that detailed 
in Fu et al. (1992) for Sutherland’s law fluids and that the growth rate curves for the 
two viscosity laws have the same structure but they are fundamentally different from 
the growth rate curve for incompressible Gortler vortices. We also note that the growth 
rate curve for 6 = 0 given in figure 2(a) is also consistent with those growth rate curves, 
obtained by Dando & Seddougui (1993), which emerged as the Mach number is 
gradually increased. 

In figure 1 (b), we have shown the growth rate curves for the first three modes when 
the crossflow is increased to 6 = 0.2. We see that the growth rates for all the modes are 
decreased at each fixed wavenumber and they no longer tend to a constant as k+ co 
(this behaviour is also seen in Dando’s (1992) O(1) Mach number calculations). 



Crossflow efects on the growth rate of inviscid Gortler vortices 357 

(a) 1.8 

1.6 

4 1.4 

0 1.2 
rcl 

Y &I 

& 1.0 

2 0.8 

.3 0.6 

0.4 

0.2 

0 

id 

on 

Y 

I , , I , 
0 1 2 3 4 

Scaled wavenumber k 

Scaled wavenumber k 

FIGURE 3 .  Dependence of the imaginary part of h for the first mode on the scaled wavenumber. 
(a) For small crossflows S = 0, 0.06, 0.1, 0.2, 0.7, 1, (b)  for larger crossflows S = 1(1)7. 

Figure 2(a) shows a series of growth rate curves for the first mode as 6 is increased 
from zero gradually. We now see that for 6 = 1 there exists a critical wavenumber, k,, 
say, at which the growth rate vanishes. Such critical wavenumbers also exist for other 
smaller 6 values (as can be seen from the exact solution to be discussed in the following 
section) although we are unable to show their existence in figure 2(a) owing to 
numerical difficulty. Also, for the higher modes, the growth curves at these 6 values 
have the same structure as in figure 1 (b). For k > k,,, no solution can be found (since 
if a stable mode could be found, then an unstable mode could also exist). Thus at each 
6 value, Gortler vortices are unstable (with respect to the first mode) in the 
wavenumber regime (0, k,,), stable in the wavenumber regime (k,,, co) and are neutrally 
stable at k = k,,. 

Figure 2 (b) shows seven more neutral curves for the first mode for the larger 6 values 
indicated. We see that whilst for small 6 values crossflow effects are stabilizing over the 
whole wavenumber regime, this is no longer the case for large enough 6 values. Figure 
2 (b) shows that crossflow effects are actually destabilizing over the small wavenumber 
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FIGURE 4. Dependence of the growth rate on the crossflow amplitude. (a)  For k = 0.5 (0.1) 1.2 
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regime whilst remaining stabilizing over the large wavenumber regime. We note that 
as 6+ 00, the critical wavenumber k,, at which A, = 0 tends to a definite limit. We shall 
show in the next section that this limiting value is given by +. Hence we can deduce that 
for large 6 values, unstable Gortler vortices can only exist in the wavenumber regime 
(0,i) and that for any Gortler vortex with a wavenumber lying in the region (i, co), 
there always exists a 6 value at which the vortex is completely stabilized. 

We have also done calculations in order to follow the evolution of the growth rate 
curves for the higher modes. It is found that as 6+ 00, these higher modes are stabilized 
over the whole wavenumber regime in contrast to the behaviour of the first mode. Thus 
from now on, our attention will be focused on the first mode. 

For Gortler vortices with wavenumber lying in the region (0, i), numerical 
calculations show that h = 0(6), as 6+ co. Therefore in the large crossflow limit, we 
can look for the following asymptotic solutions for (4.16) and (4.17): 

h = h06+h,+h,6-'+ ..., 
V(X,  5) = &(X, y) + 6-1 V,(X, 6) + . . . . (5.3) 
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By substituting (5.3) into (4.16) and (4.17), it is easy to show that A, and V, are 
determined by the eigenvalue problem 

as C - f c o .  J V, --f <-k epk< 

We see that this reduced eigenvalue problem is now independent of 6 and hence the 
Gortler vortices in the wavenumber regime (0,i) can appropriately be identified as 
crossflow vortices since in the large crossflow limit, their existence is dictated by the 
crossflow instead of by the wall curvature effects. The eigenvalue problem (5.4) can be 
solved numerically to determine the dependence of A, on the wavenumber k, but we 
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FIGURE 6.  Variation of the normalized eigenfunction for 8 = 0.2 as k is increased towards the neutral 
value, showing the emergence of a critical layer structure. (a) The real part of V ,  (b)  the imaginary 
part of V .  

shall not present the corresponding results here since these results merely confirm the 
large crossflow behaviour of those growth rate curves shown in figure 2(b). 

In figure 3, we have shown the dependence of the imaginary part of h on the 
wavenumber for the same S values as those used in figure 2. We can see that hi > 0 for 
A, 2 0, which implies that when A, = 0, the critical point defined by (5.1) lies in the 
interval of integration and thus the neutral mode (to be studied in the following 
section) has a critical-layer structure. 

In order to see the dependence of the growth rate on the crossflow for fixed 
wavenumbers, we have shown in figure 4 the growth rate curves in the (A,, 8) plane for 
a selection of k values. We can immediately draw the following conclusions. For each 
fixed k value greater than i, there exists a unique critical S value, S,, say, such that 
A, > 0 for 0 < S < S,,, A, = 0 at 6 = S,,, and there is no solution for 6 > aC,. For k < 4, 
we always have A, > 0, which confirms the findings shown in figure 2(b) that Gortler 
vortices with wavenumber lying in (0, $) are always unstable. For k = $, neutral stability 
is attained at S,, = 03. Figure 5 shows the dependence of the imaginary part of h on 
the crossflow for the same k values used in figure 4. Here again we have hi > 0. Finally, 
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in figure 6, we have shown the evolution of the real and imaginary parts of V for fixed 
values 6 = 0.2, 6 = 2 as k is increased. We can see that a critical-layer structure is 
gradually emerging as k is increased towards the neutral value kcr. 

6 .  The neutrally stable mode 
Numerical results presented in the previous section suggest that to each 6 value, there 

corresponds a critical k value at which neutral stability occurs and for each k value 
greater than +, there again exists a critical 6 value at which neutral stability is achieved. 
In this section, we shall determine the relation between k and 6 when neutral stability 
occurs. 

When Gortler vortices are neutrally stable, we have A, = 0 and so we may write 

h = ih, (6.1) 

where 
the present neutral case, the governing equation (4.16) may be written as 

is real and from our previous numerical results we know it is also positive. In 

(6.3) 
h 

l & = - > O .  
k6 

where 

This equation has a regular singular point at C; = cc and in the neighbourhood of this 
singular point the two Frobenius solutions can easily be shown to be given by 

where 

In general, the solution in the neighbourhood of the singular point would be given by 
A V, + B Y ,  a linear combination of V, and JC, but for the present neutral problem, we 
can show that either A or B must be zero. 

To the above end, we use Miles’ (1961) approach and consider a function 7(X ,  y) 
defined by 

where a subscript i signifies taking the imaginary part and a prime denotes partial 
differentiation with respect to 5. We note that 7(X, 5) is proportional to a Reynolds 
stress. It is straightforward to show with the aid of (6.2) that a7/ac = 0. Thus 7 can only 
be a function of X only. However, we know 7(X,  0) = 7(X,  00) = 0 and so 7 ( X ,  6) = 0. 

7 v ,  5 )  = (V’V*)i ,  (6.6) 

However, if 
V = A V , + B V - ,  (6.7) 

we then have 7 = (AB*VL V?+A*BV’ qi. (6.8) 

As we have argued in the previous section, if the neutral mode is taken to be the limit 
of the unstable modes, then the branch cut should be in the + plane. We therefore have 



where (6.10) 

Hence we have Vz - = V+exp(-in(1fv)S). - (6.11) 

On substituting (6.1 1) into (6.8), and making use of the result V; V- - V, Vl = v, we 
obtain 

T = {AB*v exp (in( 1 + v) S)}d. 

Hence by evaluating the above expression on the left- and right-hand sides of cc, we 
obtain 

which imply that AB* = 0 whenever sinnv =+ 0 and so either A or B must vanish if v 
is not an integer (our numerical results show this is also true even when u is an integer). 

Once we have established this result, we can determine whether the solution is A V+ 
or B Y  with the aid of the numerical solutions for the neutral mode (as the limit of our 
non-neutral calculations discussed in the previous section). The numerical results for 
6 > 0 show that the eigenfunctions are singular at the critical point and thus we deduce 
from (6.4) that the solution is always given by B Y  (since v > 1 when 6 > 0 and v+ is 
regular). This can also be verified by calculating the phase jumps across the critical 
point of the eigenfunctions; we then find that the phase jump is always $(1- v) instead 
of fn(1 + v). The same result has also been found by Blackaby & Choudhari (1993) in 
their study of the incompressible problem. Here v is calculated from (6.5). In the course 
of calculating these phase jumps for a selection of k values, we noticed the possibility 
v = 4k and this was then verified by calculations for a wide range of wavenumbers. This 
result then points to the possible existence of an exact solution to the neutral eigenvalue 
problem (6.2). After some manipulation, such an analytical solution is indeed found to 
exist and is given by 

(All*),  = 0, (AB* exp (iz( 1 + v ) ) ) ~  = 0, 

u = 4k. 
1 cc = &' S = 4h, (6.12 U-C) 

(6.12d) 

(6.12e) 

We note that each component in the product on the right-hand side of (6.12e) has a 
distinct role: they in turn represent the behaviour of the eigenfunction at the four 
regular singular points 6 = 0, cc, - 1 and co. 

The exact solution (6.12) can explain quite a few points about our numerical results. 
First, we can see from (6.12d) that k = f is an important value. For any fixed 6 > 0, 
neutral states can only be obtained fork > $ since (6.12d) does not have a solution for 
S otherwise. When k = i, the neutral state is obtained at 6 = 03. Secondly, for a given 
6 value, there exists a neutral k value (i.e. a k,, at which A, = 0) and for a given k value 
greater than a, there exists a neutral S value. All these conclusions certainly agree with 
the numerical results presented in figures 2-5. Finally, we see from (6.12b) that even 
for moderate values of k, 5, can be quite small and in these cases the eigenfunctions 
become trapped near the wall, which give rise to some numerical difficulties. This is 
why we have not extended the growth rate curves to the neutral points in figure 2(a) 
although we have done so in figure 2(b). 

After having succeeded in obtaining the above exact neutral mode solution, we also 
considered the neutral mode eigenvalue problem formulated, but unsolved, by Bassom 
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& Hall (1991). As remarked by these authors, their equation (2.14b) is just a scaled 
version of their equation (4.10~) and it governs the large wavenumber inviscid neutral 
mode. It suffices to consider their equation (4.10c), which can be written as 

(6.13) 

where $, = -/?/i. Using the same procedure as that used in obtaining (6.12), we found 
that (6.13) also has an exact solution, given by 

(6.14) 

where A is an arbitrary constant. 
The eigenvalue problem associated with (6.13) arises in Bassom & Hall (1991) where 

the re-emergence of the Gortler vortex mode is considered at high scaled crossflow and 
vortex wavenumbers. In that paper it was found that at sufficiently high crossflow 
values the Gortler mode is stabilized over a finite band of non-zero wavenumbers. This 
stable band of wavenumbers increases with the crossflow; its left-hand limit approaches 
that of the stationary crossflow vortex of Gregory, Stuart & Walker (1955), while its 
right-hand limit is described by the inviscid eigenvalue problem associated with (2.14b) 
of Bassom & Hall (1991). The result (6.13) shows that, in the notation of Bassom & 
Hall (1991), the upper neutral wavenumber is related to the crossflow parameter h by 

(6.15) 

Here R and G are the Reynolds and Gortler numbers whereas the unperturbed 
boundary layer is (is, R-'/'v, Aw). The prediction (6.15) is in excellent agreement with 
the numerical results of Bassom & Hall (1991), thus for example the result (6.15) differs 
from the computed value of a by less than 5 %  when hR'/2G-112 = 4.75. 

7. Conclusion 
So far, we have consistently assumed that 6 > 0. We have shown that if 6 = 0, 

unstable Gortler vortices can exist in the whole wavenumber regime. However, as 6 is 
increased gradually from zero, this ( 0 , ~ )  unstable wavenumber regime contracts to 
(0, k) where k is related to 6 by (6.124 and tends to i as 6 tends to infinity. Any Gortler 
vortex with a wavenumber greater than + could be completely stabilized by a large 
enough crossflow in the basic state. We have also shown that Gortler vortices over the 
wavenumber regime (0, i) are always unstable and for large crossflows they are actually 
destabilized by the crossflow. Since such Gortler vortices for large crossflows are no 
longer controlled by wall curvature effects, we have identified them more appropriately 
as crossflow vortices. 

To complete our discussions, we now investigate what happens if 6 < 0. In the zero- 
crossflow case, result (4.19) shows that if 6 Q 0, the inviscid mode has A, = 0 and so 
the growth rate curve in the (k, A,) plane is simply the k-axis. We now investigate how 
this curve (i.e. the k-axis) evolves as we increase 6 gradually. We note that the neutral 
solution (6.12) is also valid for 6 < 0. When 6 c 0, we deduce from (6.12d) that for 
each 6 value, there exists a unique k, k,, say, at which A, = 0, and we must have 
k,, < a. This is verified by the numerical results shown in figure 7 where we have shown 
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FIGURE 7. Dependence of (a) the growth rate and (b) the imaginary part of h on the scaled 
wavenumber for G = - 2 .  

two typical growth rate curves corresponding to 6 = 5,7  and to 6 = - 2. It can be seen 
that for 6 > 0 and 6 < 0, the only unstable wavenumber regime is now (O,k,,) with 
k,, < +, which is even narrower than that for 6 < 0. This is a result of the crossflow 
trying to destabilize and the negative resultant curvature trying to stabilize these 
(crossflow) vortices. It can be deduced from (6.12d), and it is also confirmed by figure 
7, that k,, tends to $ from below as 6+ co, in contrast to the situation for 6 > 0 where 
k,, tends to from above as 6+ 00. 

Figure 8 shows that a crossflow vortex at a fixed 6 value and with wavenumber lying 
in the region (0,i) can be completely stabilized by decreasing 6, and so although the 
crossflow vortices in the wavenumber regime (0,;) are always unstable for 6 > 0, they 
can be nevertheless completely destroyed by a large enough resultant negative 
curvature (represented by 6). Therefore, crossflows stabilize the unstable Gortler 
vortices with wavenumber lying in the region (;,co) and the negative resultant 
curvature stabilizes the unstable crossflow vortices with wavenumber lying in the 
region (0, i). 

To summarize, we have shown in this paper that in the hypersonic context, the 
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crossflow which can stabilize the inviscid Gortler vortices considered must necessarily 
be of order 

in terms of the original physical variable. Within this order, we have shown at precisely 
what crossflow value a Gortler vortex with a given wavenumber will be completely 
stabilized. It is seen that large wavenumber Gortler vortices can be stabilized more 
easily than smaller wavenumber Gortler vortices. This may imply that in practical 
situations small wavenumber Gortler vortices could be excited more easily than 
Gortler vortices with larger wavenumbers. 

It is also seen that crossflow effects stabilize Gortler vortices in different manners for 
incompressible and hypersonic flows. For incompressible flows, Bassom & Hall (1991) 
showed that only at sufficiently large crossflow values, were Gortler vortices stabilized 
over a finite band of wavenumbers, whilst we have shown in this paper that for any 
non-zero crossflow, hypersonic Gortler vortices are stabilized over a semi-infinite 
wavenumber regime (k,,, a), where k,, is determined by the exact solution (6 .124  
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(with k,, identified with the k there). We note, however, that over the remaining 
wavenumber regime, i.e. (0, k,,), the vortices are destabilized by crossflow effects and 
in fact become crossflow vortices in the large crossflow limit. This latter behaviour is 
nonetheless similar to that for incompressible flows. 

We have also shown that in order to quantify vortices’ response to crossflow effects, 
the scaled wavenumber regime may be neatly divided into two regions : (0, f )  and (i, co). 
We have identified the vortices wavenumber lying in the first region as crossflow 
vortices since in the large crossflow limit, their existence is no longer supported by 
curvature effects but instead by the crossflow. We have also found the exact solution 
to the neutrally stable mode. This exact solution should be useful for studying the 
nonlinear development of Gortler vortices which is now under consideration. 

This research was supported in part by the National Aeronautics and Space 
Administration under NASA Contract no. NAS1-18605 while P. H. was in residence 
at the institute for Computer Applications in Science and Engineering (ICASE), 
NASA Langley Research Center, Hampton, VA 23665. This work was also partially 
supported by NASA under Grant NASA 18107 and by USAF under Grant 
AFOSR89-0042. 

Appendix. Basic state properties in the temperature adjustment layer 
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